首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1274篇
  免费   61篇
  国内免费   275篇
安全科学   79篇
废物处理   84篇
环保管理   131篇
综合类   627篇
基础理论   171篇
污染及防治   369篇
评价与监测   62篇
社会与环境   51篇
灾害及防治   36篇
  2024年   1篇
  2023年   19篇
  2022年   53篇
  2021年   44篇
  2020年   28篇
  2019年   24篇
  2018年   32篇
  2017年   48篇
  2016年   50篇
  2015年   59篇
  2014年   85篇
  2013年   111篇
  2012年   91篇
  2011年   92篇
  2010年   88篇
  2009年   82篇
  2008年   80篇
  2007年   68篇
  2006年   89篇
  2005年   46篇
  2004年   38篇
  2003年   48篇
  2002年   41篇
  2001年   44篇
  2000年   40篇
  1999年   31篇
  1998年   23篇
  1997年   37篇
  1996年   12篇
  1995年   16篇
  1994年   13篇
  1993年   9篇
  1992年   13篇
  1991年   13篇
  1990年   4篇
  1989年   4篇
  1987年   6篇
  1986年   2篇
  1985年   6篇
  1984年   5篇
  1982年   2篇
  1981年   5篇
  1980年   4篇
  1979年   2篇
  1978年   1篇
  1975年   1篇
排序方式: 共有1610条查询结果,搜索用时 31 毫秒
51.
Biomass is recognized as an important solution to energy and the environmental problems related to fossil fuel usage. The rational utilization of biomass waste is important not only for the prevention of environmental issues, but also for the effective utilization of natural resources. Pyrolysis and hyrolysis in subcritical water are promising processes for biomass waste conversion. This paper deals with hydrolysis and pyrolysis of peanut shells. Hydrolysis and pyrolysis kinetics of peanut shell wastes were investigated for the in-depth exploration of process mechanisms and for the control of the reactions. Hydrolysis kinetics was conducted in a temperature range of 180–240 °C. A simplified kinetic model to describe the hydrolysis of peanut shells was proposed. Hydrolysis activation energy as well as the pre-exponential factor was determined according to the model. The target products of peanut shell hydrolysis, reducing sugars, can reach up to 40.5 % (maximum yield) at 220 °C and 180 s. Pyrolysis characteristics were investigated. The results showed that three stages appeared in this thermal degradation process. Kinetic parameters in terms of apparent pyrolysis activation energy and pre-exponential factor were obtained by the Coats–Redfern method.  相似文献   
52.
This paper presents a stand-alone wind power system with battery/supercapacitor hybrid energy storage. A stand-alone wind power system mainly consists of a wind turbine, a permanent magnet synchronous generator, hybrid energy storage devices based on a vanadium redox flow battery and a supercapacitor, an AC/DC converter, two bidirectional DC/DC converters, a DC/AC converter and a variable load. Several control strategies for the stand-alone wind power system are involved such as a maximum power point tracking (MPPT) control, a vanadium redox flow battery charge/discharge control and a supercapacitor charge/discharge control. The proposed MPPT control combines a sliding mode control with an extreme search control to capture maximum wind energy. This strategy avoids the necessity of measuring wind velocity, obtaining models or parameters of the wind turbine and calculating the differentials of the power generated from the wind power system and from the speed of the generator. The battery charge/discharge control maintains a constant DC bus voltage. When the battery charging/discharging current reaches the setting threshold, the charge/discharge control of the supercapacitor is triggered to limit the charging/discharging current of the battery. The simulation results show that the proposed method can rapidly respond to variations in wind velocity and load power.  相似文献   
53.
The contamination of semi-volatile organic compounds (SVOCs) in the surface sediments of the Guan River Estuary, China was fully investigated. Total concentrations of 56 species of SVOCs ranged from 132 to 274 ng/g with an average of 186 ng/g (dry weight). Polycyclic aromatic hydrocarbon (PAH) concentrations were positively correlated with clay content and negatively correlated with sediment grain size. Source identification indicated that PAHs originated mainly from pyrolytic sources. However, intense ship traffic in the estuary may provide sources of petrogenic PAHs. Organochlorine pesticides (OCPs) mainly originated from direct input of dichlorodiphenyltrichloroethanes (DDTs) during some industrial processes. The SVOC concentrations were also compared with International Sediments Quality Guidelines and Sediments Quality Criteria, and the results indicated that negative biological impacts may originate from high concentrations of FLO, p,p′-DDE, and total DDTs.  相似文献   
54.

Yearly, huge amounts of sock refuse are discarded into the environment. Socks contain many molecules, and worn ones, which are rich in smell-causing bacteria, have a strong influence on animals’ behaviors. But the impacts of sock odor on the oviposition behavior of dengue vectors are unknown. We assessed whether Aedes albopictus changes its oviposition activity in response to the presence of used socks extract (USEx) in potential breeding grounds, using choice and no-choice bioassays (NCB). When furnished even chances to oviposit in two sites holding USEx and two others containing water (control), Ae. albopictus deposited significantly less eggs in USEx than in water sites. A similar pattern of oviposition preference was also observed when there were more oviposition options in water. When there were greater oviposition opportunities in USEx sites, Ae. albopictus oviposited preferentially in water. Females laid significantly more eggs during the NCB involving water than USEx. Also, significantly more mature eggs were retained by females in the NCB with USEx than in that with water. These observations strongly suggest the presence of molecules with either repellent or deterrent activities against Ae. albopictus females and provide an impetus to advocate the integration of used socks in dengue control programs. Such applications could be a realistic end-of-life recourse to reroute this waste from landfills.

  相似文献   
55.
The increase use of pharmaceutical compounds in veterinary practice and human population results in the ubiquitous presence of these compounds in aquatic ecosystems. Because pharmaceuticals are highly bioactive, there is concern about their toxicological effects in aquatic organisms. Therefore, the aim of this study was to assess the effects of an effluent from a psychiatric hospital (containing a complex mixture of 25 pharmaceutical compounds from eleven therapeutic classes) on the freshwater clam Corbicula fluminea using a proteomic approach. The exposure of C. fluminea to this complex effluent containing anxiolytics, analgesics, lipid regulators, beta blockers, antidepressants, antiepileptics, antihistamines, antihypertensives, antiplatelets and antiarrhythmics induced protein changes after 1 day of exposure in clam gills and digestive gland more evident in the digestive gland. These changes included increase in the abundance of proteins associated with structural (actin and tubulin), cellular functions (calreticulin, proliferating cell nuclear antigen (PCNA), T complex protein 1 (TCP1)) and metabolism (aldehyde dehydrogenase (ALDH), alcohol dehydrogenase, 6 phosphogluconate dehydrogenase). Results from this study indicate that calreticulin, PCNA, ALDH and alcohol dehydrogenase in the digestive gland and T complex protein 1 (TCP1)) and 6 phosphogluconate dehydrogenase in the gills represent useful biomarkers for the ecotoxicological characterization of psychiatric hospital effluents in this species.  相似文献   
56.
• Published data was used to analyze the fate of ARGs in water treatment. • Biomass removal leads to the reduction in absolute abundance of ARGs. • Mechanism that filter biofilm maintain ARB/ARGs was summarized. • Potential BAR risks caused by biofiltration and chlorination were proposed. The bacterial antibiotic resistome (BAR) is one of the most serious contemporary medical challenges. The BAR problem in drinking water is receiving growing attention. In this study, we focused on the distribution, changes, and health risks of the BAR throughout the drinking water treatment system. We extracted the antibiotic resistance gene (ARG) data from recent publications and analyzed ARG profiles based on diversity, absolute abundance, and relative abundance. The absolute abundance of ARG was found to decrease with water treatment processes and was positively correlated with the abundance of 16S rRNA (r2 = 0.963, p<0.001), indicating that the reduction of ARG concentration was accompanied by decreasing biomass. Among treatment processes, biofiltration and chlorination were discovered to play important roles in shaping the bacterial antibiotic resistome. Chlorination exhibited positive effects in controlling the diversity of ARG, while biofiltration, especially granular activated carbon filtration, increased the diversity of ARG. Both biofiltration and chlorination altered the structure of the resistome by affecting relative ARG abundance. In addition, we analyzed the mechanism behind the impact of biofiltration and chlorination on the bacterial antibiotic resistome. By intercepting influent ARG-carrying bacteria, biofilters can enrich various ARGs and maintain ARGs in biofilm. Chlorination further selects bacteria co-resistant to chlorine and antibiotics. Finally, we proposed the BAR health risks caused by biofiltration and chlorination in water treatment. To reduce potential BAR risk in drinking water, membrane filtration technology and water boiling are recommended at the point of use.  相似文献   
57.
Biodiesel is now-a-days recognized as a real potential alternative to petroleum-derived diesel fuel due to its number of desirable characteristics. However, its higher production cost resulting mainly due to use of costly food-grade vegetable oils as raw materials is the major barrier to its economic viability. Present work is an attempt to explore the potential of Eriobotrya japonica seed oil for the synthesis of biodiesel using alkali-catalyzed transesterification. Optimization of production parameters, namely molar ratio of alcohol to oil, amount of catalyst, reaction time and temperature, was carried out using Taguchi method. Fatty acid composition of both oil and biodiesel was determined using GC and H1 NMR. Alcohol to oil molar ratio of 6:1, catalyst amount of 1% wt/wt, 2 h reaction time and 50 °C reaction temperature were found to be the optimum conditions for obtaining 94.52% biodiesel. Highest % contribution was shown by the ‘amount of catalyst’ (67.32%) followed by molar ratio of alcohol to oil (25.51%). Major fuel properties of E. japonica methyl esters produced under optimum conditions were found within the specified limits of ASTM D6751 for biodiesel, hence it may be considered a prospective substitute of petro-diesel.  相似文献   
58.
The porous composites of clay and fly ash have the potential to be used in many fields, such as catalyst support and gas adsorbents. In this study, various ratios of fly ash (1–2) with different percentage of suspension (50–70 wt%) were applied to produce porous clay-fly ash composites via polymeric replica technique. Fabrication process starts by mixing clay and fly ash in distilled water to form slurry. The process is followed by fully immersing polymer sponge in slurry. The excess slurry is then removed through squeezing. Finally, the sponge coated with slurry is sintered at 500 and 1250 °C for 1 h. It is found that the compressive strength of porous composites improves significantly (0.178–1.28 MPa) when the amount of clay-fly ash suspension mixture (50–70 wt%) increases. The compressive strength of porous composites is mainly attributed to the mullite, quartz and amorphous phase formations. These results are supported by X-ray diffraction analysis. On the other hand, increase in the amount of suspension reduces the apparent density (from 2.44 to 2.32 g/cm3) and porosity (from 97 to 85 %). The reduction in apparent density is believed to be caused by the presence of high fly ash content in porous composites. The melted fly ash cenospheres have closed the internal pores and increased density of samples. Higher suspension level not only reduces porosity, but also increases close pores of the porous composites. The results are justified through the observation from the structures of porous clay-fly ash composites.  相似文献   
59.
MnO2 microspheres with various surface structures were prepared using the hydrothermal method, and Au/MnO2 catalysts were synthesized using the sol-gel method. We obtained three MnO2 microspheres and Au/MnO2 samples: coherent solid spheres covered with wire-like nanostructures, solid spheres with nanosheets, and hierarchical hollow microspheres with nanoplatelets and nanorods. We investigated the properties and catalytic activities of formaldehyde oxidation at room temperature. Crystalline structures of MnO2 are the main factor affecting the catalytic activities of these samples, and γ-MnO2 shows high catalytic performance. The excellent redox properties are responsible for the catalytic ability of γ-MnO2. The gold-supported interaction can change the redox properties of catalysts and accelerate surface oxygen species transition, which can account for the catalytic activity enhancement of Au/MnO2. We also studied intermediate species. The dioxymethylene (DOM) and formate species formed on the catalyst surface were considered intermediates, and were ultimately transformed into hydrocarbonate and carbonate and then decomposed into CO2. A proposed mechanism of formaldehyde oxidation over Au/MnO2 catalysts was also obtained.  相似文献   
60.
Plastic waste is a source of organic contaminants such as hexabromocyclododecanes (HBCDs). HBCDs have been found to cause developmental and reproductive toxicity; it is important to investigate the occurrence and metabolization of HBCDs in the soil environments with plastic waste contamination. This work analyzed HBCDs and their metabolites in soil and plant samples collected from Xinle and Dingzhou—the major plastic waste recycling centers in North China. Results showed that total HBCD concentrations in soils followed the order: plastic waste treatment site (11.0–624 ng/g) > roadside (2.96–85.4 ng/g) ≥ farmland (8.69–55.5 ng/g). HBCDs were detected in all the plant samples with total concentrations ranging from 3.47 to 23.4 ng/g. γ-HBCD was the dominant congener in soils, while α-HBCD was preferentially accumulated in plants. Compositions of HBCD isomers in soils and plants were significantly different (P < 0.05) among sampling sites and among plant species. HBCDs in farmland soil and all plant samples exhibited high enantio-selectivity based on the enantiomeric fractions (EFs). Furthermore, metabolites of pentabromocyclododecenes (PBCDEs) were frequently identified in soils, and mono-OH-HBCDs were the most common ones in plants. This study for the first time provides evidences of HBCD contamination in the soil-plant system caused by plastic waste, their stereo-selectivity, and metabolization behavior, improving our understanding of the environmental behavior and fate of HBCDs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号